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T H E M E  A R T I C L E

Sorting is arguably the most studied prob-
lem in computer science, because of both
its use in many applications and its in-
trinsic theoretical importance. The basic

sorting problem is the process of rearranging a
given collection of items into ascending or de-
scending order. The items can be arbitrary ob-
jects with a linear ordering. For example, the
items in a typical business data-processing ap-
plication are records, each containing a special
identifier field called a key, and the records must
be sorted according to their keys. Sorting can
greatly simplify searching for or updating a
record. This article focuses only on the case
where all the items to be sorted fit in a machine’s
main memory. Otherwise, the main objective of
sorting, referred to as external sorting, is to min-
imize the amount of I/O communication, an is-
sue this article does not address.

Although researchers have developed and an-

alyzed many sorting algorithms, the Quicksort
algorithm stands out. This article shows why.

Staying power

Tony Hoare presented the original algorithm
and several of its variations in 1962,1 yet Quick-
sort is still the best-known practical sorting al-
gorithm. This is quite surprising, given the
amount of research done to develop faster sort-
ing algorithms during the last 38 years or so.
Quicksort remains the sorting routine of choice
except when we have more detailed information
about the input, in which case other algorithms
could outperform Quicksort.

Another special feature of the algorithm is the
richness of its complexity analysis and structure,
a feature that has inspired the development of
many algorithmic techniques for various combi-
natorial applications. Although the worst-case
complexity of Quicksort is poor, we can rigor-
ously prove that its average complexity is quite
good. In fact, Quicksort’s average complexity is
the best possible under certain general complex-
ity models for sorting. More concretely, Quick-
sort performs poorly for almost sorted inputs but
extremely well for almost random inputs.

A PERSPECTIVE ON QUICKSORT

This article introduces the basic Quicksort algorithm and gives a flavor of the richness of its
complexity analysis. The author also provides a glimpse of some of its generalizations to
parallel algorithms and computational geometry.
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In retrospective, Quicksort follows the divide-
and-conquer strategy (likely one of the oldest
military strategies!), one of the most powerful
algorithmic paradigms for designing efficient al-
gorithms for combinatorial problems. In partic-
ular, a variation of Quicksort, which Hoare also
mentioned in his original paper, is based on a
randomization step using a random-number
generator.

Researchers cultivated this idea years later and
significantly enriched the class of randomized al-

gorithms, one of the most in-
teresting areas in theoretical
computer science. You could
argue that these developments
are somewhat independent of
Quicksort, but many of the
randomized combinatorial al-
gorithms are based on the
same randomized divide-and-
conquer strategy described in
Hoare’s original paper. Indeed,
many randomized algorithms
in computational geometry
can be viewed as variations of
Quicksort.

Finally, a generalization of
the randomized version of the Quicksort algo-
rithm results in a parallel sample-sorting strategy,
the best-known strategy for sorting on parallel
machines, both from a theoretical perspective and
from extensive experimental studies.2

The basic algorithm

The divide-and-conquer strategy has three
phases. First, divide the problem into several sub-
problems (typically two for sequential algorithms
and more for parallel algorithms) of almost equal
sizes. Second, solve independently the resulting
subproblems. Third, merge the solutions of the
subproblems into a solution for the original
problem. This strategy’s efficiency depends on
finding efficient procedures to partition the prob-
lem during the initial phase and to merge the so-
lutions during the last phase. For example, the
fast Fourier transform follows this strategy, as
does Quicksort. Here is a high-level description
of Quicksort applied to an array A[0 : n – 1]:

1. Select an element from A[0 : n – 1] to be the
pivot.

2. Rearrange the elements of A to partition A
into a left subarray and a right subarray, such
that no element in the left subarray is larger

than the pivot and no element in the right
subarray is smaller than the pivot.

3. Recursively sort the left and the right sub-
arrays.

Ignoring the implementation details for now,
it is intuitively clear that the previous algorithm
will correctly sort the elements of A. Equally
clear is that the algorithm follows the divide-
and-conquer strategy. In this case, Steps 1 and 2
correspond to the partitioning phase. Step 3
amounts to solving the induced subproblems in-
dependently, which sorts the entire array, mak-
ing a merging phase unnecessary.

Two crucial implementation issues are missing
from our initial description of the Quicksort algo-
rithm. The first concerns the method for selecting
the pivot. The second concerns the method for
partitioning the input once the pivot is selected.

Selecting the pivot
Because a critical assumption for an efficient 

divide-and-conquer algorithm is to partition the
input into almost equal-size pieces, we should se-
lect the pivot so as to induce almost equal-size
partitions of the array A. Assuming A contains n
distinct elements, the best choice would be to se-
lect the median of A as the pivot. Although some
good theoretical algorithms can find the median
without first sorting the array, they all incur too
much overhead to be useful for a practical imple-
mentation of Quicksort.

In reality, there are three basic methods to se-
lect the pivot. The first and simplest is to select
an element from a fixed position of A, typically
the first, as the pivot. In general, this choice of
the pivot does not work well unless the input is
random. If the input is almost sorted, the input
will be partitioned extremely unevenly during
each iteration, resulting in a very poor perfor-
mance of the overall algorithm. The second
method for selecting the pivot is to try to ap-
proximate the median of A by computing the
median of a small subset of A.

One commonly used method is to select the
pivot to be the median of the first, the middle,
and the last elements of A. Such a method works
well, even though we may still end up with very
uneven partitions during each iteration for cer-
tain inputs. Finally, we can randomly select an
element from A to be the pivot by using a ran-
dom-number generator. In this case, we can rig-
orously prove that each step will result in an al-
most even partition with very high probability,
regardless of the initial input distribution.

What makes Quicksort

so interesting from the

complexity-analysis

point of view is its far

superior average

complexity. 
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Partitioning the input
Because the algorithm is recursive, I describe a

simple partitioning procedure for a general sub-
array A[l, r], where l < r. The procedure manip-
ulates two pointers i and j, where i moves from
left to right starting at position l, and j moves
from right to left starting at position r. The
pointer i is continually incremented until an el-
ement A[i] larger than the pivot is encountered.
Similarly, j is decremented until an element A[j]
smaller than the pivot is encountered. At that
time, A[i] and A[j] are exchanged, and the
process continues until the two pointers cross
each other, which indicates the completion of
the partitioning phase. More precisely, Figure 1
gives the following pseudocode procedure for
partitioning A[l, r], where all the elements of A
are assumed to be distinct, and the left-most el-
ement is chosen as the pivot.

The partition procedure starts by initializing
the pointers i and j and selecting the left-most
element to be the pivot. Note that j is initially
set to the value r + 1 so that the while loop for
j in Step 2 will start by examining the subarray’s
right-most element. The last two assignments in
Step 2 ensure that the pivot is placed in its cor-
rect position in the final sorted order of A. The
partition procedure takes linear time with a very
small constant factor. Donald Knuth3 attributes
this particular partitioning procedure to Robert
Sedgewick.4

Quicksort initially calls the partition proce-
dure with the values l = 0 and r = n – 1, followed
by recursive calls to handle the subarrays A[l, 
j – 1] and A[j + 1, r]. We can eliminate the re-
cursive calls by using a stack to keep track of the
partitions yet to be sorted. We run Quicksort
until the number of elements in the subarray is
small (say, fewer than 30); then we use a simpler
sorting procedure, such as insertion sort.

Complexity analysis

We can use several measures to analyze a sort-
ing algorithm’s performance. We can count the
number of comparisons the algorithm makes, be-
cause comparisons seem to be the major opera-
tions performed by any general sorting algorithm.
Another important parameter is the number of
swaps the algorithm incurs. Yet another measure,
one that is perhaps more relevant for today’s
processors and their use of memory hierarchies
(typically two levels of cache and main memory),
is the data movement and its spatial locality. Here,
I concentrate on the number of comparisons, for

which there are well-known models (for example,
algebraic decision trees5) that can derive nonlinear
lower bounds for sorting.

Worst-case analysis
In general, an algorithm’s most commonly

used performance metric is the asymptotic esti-
mate of the maximum amount of resources (for
example, the number of operations, the number
of memory accesses, and memory size) required
by any instance of a problem of size n. In sort-
ing, we determine the asymptotic number of
comparisons required in the worst case. Let T(n)
be the number of comparisons required by our
Quicksort algorithm, using any of the methods
just described for selecting the pivot. Then the
following recurrence equations express T(n):

where cn is an upper bound on the time required
to partition the input. The parameter i is the size
of the left partition resulting after the first itera-
tion. Because we are focusing on the worst-case
scenario, we take the maximum over all possible
values of i. It is intuitively clear that the worst
case occurs when i = 1 (or equivalently, i = n – 1),
which can happen for each of our three pivot-
selection methods. Therefore, T(n) = Θ(n2),
which is inferior to the worst-case complexity of
several of the other known sorting algorithms.
However, what makes Quicksort so interesting
from the complexity-analysis point of view is its
far superior average complexity.
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Figure 1. The partitioning procedure for A[l, r].
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Average-case analysis
Although performing a worst-case analysis on

an algorithm is usually easy, it often results in a
very pessimistic performance estimate. Known al-
ternative performance measures seem more use-
ful, but deriving their asymptotic behavior is sig-
nificantly more difficult. One such measure is to
establish the average complexity under a certain
probability distribution of the input. Not only is
deriving such a bound difficult, but also this ap-
proach fails to offer adequate ways for defining the
probability distribution of the input in most cases.

An alternative approach is to let the algorithm
use a random-number generator (such as our
third method for randomly selecting the pivot
from the input array). In this case, a probabilistic
analysis of the algorithm does not require any as-
sumptions about the input distribution, and hence
holds for any input distribution. This approach
gives rise to the so-called randomized algorithms.

Here, I consider the case when the array’s first
element is selected as the pivot and assume ran-
dom input. So, the pivot is equally likely to be
of any rank between 1 and n. Therefore, the av-
erage complexity is given by the recurrence
equations,

The first equation is equivalent to

.

Multiplying both sides by n gives

.

Subtracting the recurrence equation corre-
sponding to n – 1 from the one corresponding
to n, we get

nT(n) – (n – 1)T(n – 1) = 2T(n – 1) + 2cn – c.

Rearranging the terms and dropping c (it is
asymptotically irrelevant) gives

nT(n) = (n + 1)T(n – 1) + 2cn.

Dividing both sides by n(n + 1) gives

.

In particular, we have this sequence of equations:

Adding the above equations and considering that

where γ ≈ 0.577 is Euler’s constant, we find that
T(n) = O(n log n).

Under a fairly general model for sorting that
even allows algebraic operations,5 no algorithm
can beat this bound. This analysis formally jus-
tifies the superior performance of Quicksort in
most practical situations.

Analysis of randomized Quicksort
Consider the case where the pivot is randomly

selected from the input array. With high proba-
bility—that is, with probability 1 – n–c for some
positive constant c—the resulting Quicksort al-
gorithm’s complexity is O(n log n), regardless of
the initial input distribution.

Our strategy is as follows. We view the Quick-
sort algorithm as a sequence of iterations such
that the first iteration partitions the input into
two buckets, the second iteration partitions the
previous two buckets into four buckets, and so
on, until each bucket is small enough (say, ≤ 30
elements). We then use insertion sort to sort
these buckets. Another way of looking at this is
to unfold the recursion into a tree of partitions,
where each level of the tree corresponds to an
iteration’s partitions. Partitioning the buckets
during each iteration takes a deterministic O(n)
time. So, our goal is to show that the number of
iterations is O(log n) with high probability.

For any specific element e, the sizes of any two
consecutive buckets containing e decrease by a
constant factor with a certain probability (Claim
1). Then, with probability 1 – O(n–7), the bucket
containing e will be of size 30 or less after O(log
n) iterations (Claim 2). Using Boole’s inequality,
we conclude that, with probability 1 – O(n–6), the
bucket of every element has ≤ 30 elements after
O(log n) iterations.6

Let e be an arbitrary element of our input array
A. Let nj be the size of the bucket containing e at
the end of the jth partitioning step, where j ≥ 1. 
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We set n0 = n. Then, this claim holds:

Claim 1. Pr{nj+1 ≥ 7nj/8} ≤ 1/4, for any j ≥ 0.

Proof. An element a partitions the jth bucket
into two buckets, one of size at least 7nj/8 if and
only if rank(a : Bj) ≤ nj/8 or rank(a : Bj) ≥ 7nj/8.
The probability that a random element is among
the smallest or largest nj/8 elements of Bj is at
most 1/4; hence, Claim 1 follows.

We fix the element e of A, and we consider the
sizes of the buckets containing e during various
partitioning steps. We call the jth partitioning
step successful if nj < 7nj–1/8. Because n0 = n, the
size of the bucket containing e after k successful
partitioning steps is smaller than (7/8)kn. There-
fore, e can participate in at most c log(n/30) suc-
cessful partitioning steps, where c = 1/log(8/7).
For the remainder of this proof, all logarithms
are to the base 8/7; so the constant c is equal to 1.

Claim 2. Among 20 log n partitioning steps, the
probability that an element e goes through 20 
log n – log(n/30) unsuccessful partitioning steps is
O(n–7).

Proof. The random choices made at various par-
titioning steps are independent; therefore, the
events that constitute the successful partitioning
steps are independent. So, we can model these
events as Bernoulli trials. Let X be a random vari-
able denoting the number of unsuccessful parti-
tioning steps among the 20 log n steps. Therefore,

Given that

we obtain that our probability is

.

Therefore, Claim 2 follows.
By Boole’s inequality, the probability that one

or more elements of A go through 20 log n –
log(n/30) unsuccessful steps is at most O(n × n–7)
= O(n–6). Thus, with probability 1 – O(n–6), the
algorithm terminates within 20 log n iterations.

So, we have proven that the algorithm takes 
O(n log n) time with high probability.

Extension to parallel processing

For our purposes, a parallel machine is simply a
collection of processors interconnected to allow
the coordination of their activities and the
exchange of data. Two types of parallel machines
currently dominate. The first is symmetric multi-
processors (SMPs), which are the main choice 
for the high-end server
market, and soon will be
on most desktop com-
puters. The second type
clusters high-end pro-
cessors through pro-
prietary interconnect
(for example, the IBM
SP High-Performance
Switch) or through off-
the-shelf interconnect
(the ATM switch, giga-
bit Ethernet, and so on).

A parallel sorting algorithm tries to exploit the
various resources on the parallel machine to
speed up the execution time. In addition to dis-
tributing the load almost evenly among the var-
ious processors, a good parallel algorithm should
minimize the communication and coordination
among the different processors. Parallel algo-
rithms often perform poorly (and sometimes ex-
ecution time increases with the number of
processors) primarily because of the amount of
communication and coordination required be-
tween the different processors.

Quicksort’s strategy lends itself well to parallel
machines, resulting in sample sorting:

1. Select p – 1 pivots, where p is the number of
processors available.

2. Partition the input array into p subarrays,
such that every element in the ith subarray is
smaller than each element in the (i + 1)th
subarray.

3. Solve the problem by getting the ith proces-
sor to sort the ith subarray.

One way to choose the pivots is by randomly
sampling the input elements—hence, the name
sample sort. (A generalization of the bucket-
sorting method, also called sample sort, involves
sampling as well.7) As in the sequential case, the
algorithm’s efficiency depends on how the piv-
ots are selected and on the method used to par-
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tition the input into the p partitions.
Before addressing these issues, let’s define our

problem more precisely. We have n distinct ele-
ments that are distributed evenly among the p
processors of a parallel machine, where we as-
sume that p divides n evenly. The purpose of
sorting is to rearrange the elements so that the
smallest n/p elements appear in processor P1 in
sorted order, the second smallest n/p elements
appear in processor P2 in sorted order, and so on.

A simple way to realize the sample sorting strat-
egy is to have each processor choose s samples from
its n/p input elements (In the next section, I’ll show
you one way to do this.), route the ps samples into a
single processor, sort the samples on that processor,
and select every sth element as a pivot.8 Each
processor partitions its input elements into p
groups using the pivots. Then, the first group in
each processor is sent to P1, the second to P2, and
so on. Finally, we sort the overall input by sorting
the elements in each processor separately.

The first difficulty with this approach is the work
involved in gathering and sorting the samples. A
larger value of s improves load balancing but in-
creases overhead. The second difficulty is that the
communication required for routing the elements
to the appropriate processors can be extremely in-
efficient because of large variations in the number
of elements destined for different processors.

Consider a variation that scales optimally with
high probability and has performed extremely
well on several distributed-memory parallel ma-
chines using various benchmarks.2 Here are the
algorithm’s steps:

1. Randomization. Each processor Pi (1 ≤ i ≤ p)
randomly assigns each of its n/p elements to
one of p buckets. With high probability, no
bucket will receive more than c1(n/p2) ele-
ments for some constant c1. Each processor
then routes the contents of bucket j to Pj.

2. Local sorting. Each processor sorts the ele-
ments received in Step 1. The first processor
then selects p – 1 pivots that partition its
sorted sublist evenly and broadcasts the piv-
ots to the other p – 1 processors.

3. Local partitioning. Each processor uses binary
search on its local sorted list to partition it into
p subsequences using the pivots received from
Step 2. Then the jth subsequence is sent to Pj.

4. Local merging. Each processor merges the p
sorted subsequences received to produce the
ith column of the sorted array.

Our randomized sampling algorithm runs in

O((n log n)/p) with high probability, using only
two rounds of balanced communication and a
broadcast of p – 1 elements from one processor
to the remaining processors.2

Applications to computational
geometry

Computational geometry is the study of de-
signing efficient algorithms for computational
problems dealing with objects in Euclidean
space. This rich class of problems arises in many
applications, such as computer graphics, com-
puter-aided design, robotics, pattern recogni-
tion, and statistics. Randomization techniques
play an important role in computational geome-
try, and most of these techniques can be viewed
as higher-dimensional generalizations of Quick-
sort.9 We’ll look at the simplest example of such
techniques, which is also related to the sample
sorting procedure I just described.

Let N be a set of points on the real line R such
that |N| = n. Sorting the n points amounts to
partitioning R into n + 1 regions, each defined
by an (open) interval. Let S be a random point
of N that divides R into two halves. Let N1 and
N2 be the subsets of N contained in these halves.
Then, we expect the sizes of N1 and N2 to be
roughly equal. As in the Quicksort algorithm,
we can sort N1 and N2 recursively.

As a generalization, let S be a random sample
of N of size s. One way to construct S is to
choose the first element of S randomly from N
and delete it from N. Continue the process, each
time selecting a random element from the re-
maining set N and deleting it from N, until we
have s elements in our set S. Such a procedure is
called sampling without replacement.

Does S divide the real line R into regions of
roughly equal size? As I stated earlier, the parti-
tion is defined by the set of open intervals. The
conflict size of any such interval I is the number
of points of N and I, but not in S. We would like
to determine whether each interval’s conflict size
is O(n/s) with high probability. Unfortunately,
we can only show a weaker result—namely, that
with probability greater than 1/2, each interval’s
conflict size is O((n log s)/s).

We can apply the same random sampling tech-
nique to the case where N is a set of lines in the
plane. A random sample S generates an arrange-
ment (that is, the convex regions in the plane in-
duced by the lines in S). The conflict size is the
number of lines in N, but not in S, that intersect
a region of the arrangement of S. If we refine the
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arrangement of S so that each region has a
bounded number of sides, then with high prob-
ability, the conflict size of every region is indeed
O((n log s)/s).

These two simple generalizations of the ran-
domized Quicksort can be used to develop effi-
cient algorithms for various problems in com-
putational geometry.9

The basic strategy of Quicksort—ran-
domized divide-and-conquer—repre-
sents a fundamental approach for de-
signing efficient combinatorial algo-

rithms that will remain a source of inspiration for
researchers for many years to come. In particular,
the full potential of the technique in handling
higher-dimensional problems in computational
geometry and in developing parallel algorithms for
combinatorial problems is yet to be fully exploited.
In the future, we can anticipate vigorous research
progress along these directions.
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