
Iassume you share the view that the rapid
computation of a square matrix’s eigenval-
ues is a valuable tool for engineers and sci-
entists.1 The QR Algorithm solves the

eigenvalue problem in a very satisfactory way,
but this success does not mean the QR Algo-
rithm is necessarily the last word on the subject.
Machines change and problems specialize. What
makes the experts in matrix computations happy
is that this algorithm is a genuinely new contri-
bution to the field of numerical analysis and not
just a refinement of ideas given by Newton,
Gauss, Hadamard, or Schur.

Early history of eigenvalue
computations

Matrix theory dramatically increased in im-
portance with the arrival of matrix mechanics
and quantum theory in the 1920s and 1930s. In
the late 1940s, some people asked themselves

how the digital computer might be employed to
solve the matrix eigenvalue problem. The obvi-
ous approach was to use a two-stage method.
First, compute the coefficients of the character-
istic polynomial, and then compute the zeros of
the characteristic polynomial.

There are several ingenious ways to accomplish
the first stage in a number of arithmetic opera-
tions proportional to n3 or n4, where n is the order
of the matrix.2 The second stage was a hot topic of
research during this same time. Except for very
small values of n, n ≤ 10, this two-stage approach
is a disaster on a computer with fixed word length.
The reason is that the zeros of a polynomial are,
in general, incredibly sensitive to tiny changes in
the coefficients, whereas a matrix’s eigenvalues are
often, but not always, insensitive to small uncer-
tainties in the n2 entries of the matrix. In other
words, the replacement of those n2 entries by the
characteristic polynomial’s n coefficients is too
great a condensation of the data.

A radical alternative to the characteristic poly-
nomial is the use of similarity transformations to
obtain a nicer matrix with the same eigenvalues.
The more entries that are zero, the nicer the ma-
trix. Diagonal matrices are perfect, but a trian-
gular matrix is good enough for our purposes be-
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THE QR ALGORITHM

After a brief sketch of the early days of eigenvalue hunting, the author describes the QR
Algorithm and its major virtues. The symmetric case brings with it guaranteed convergence
and an elegant implementation. An account of the impressive discovery of the algorithm
brings the article to a close.
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cause the eigenvalues lie on the main diagonal.
For deep theoretical reasons, a triangular matrix
is generally not attainable in a finite number of
arithmetic operations. Fortunately, one can get
close to triangular form with only O(n3) arith-
metic operations. More precisely, a matrix is said
to be upper Hessenberg if it is upper triangular with
an extra set of nonzero entries just below the di-
agonal in positions (i + 1, i), i = 1, 2, …, n – 1, and
these are called the subdiagonal entries. What is
more, the similarity transformations needed to
obtain a Hessenberg form (it is not unique) can
be chosen so that no computed matrix entry ever
exceeds the norm of the original matrix. Any
proper norm, such as the square root of the sum
of the squares of the entries, will do.

This property of keeping intermediate quan-
tities from becoming much bigger than the orig-
inal data is important for computation with
fixed-length numbers and is called stability. The
hard task is to find similarity transformations
that both preserve Hessenberg form and elimi-
nate those subdiagonal entries. This is where the
QR Algorithm comes to the rescue. The sub-
routine DHSEQR in the Lapack library em-
bodies the latest implementation.3

Let us try to put the improvement based on
QR in perspective. It has reduced the time for
standard eigenvalue computations to the time
required for a few matrix multiplies.

The LU and QR Algorithms

Suppose B = XY, with X invertible. Then the
new matrix C := YX is similar to B, because C =
YX = X–1BX. Although intriguing, this observa-
tion does not appear to be of much use to eigen-
value hunters. Let us recall two well-known ways
of factoring a matrix:

• Triangular factorization (or Gaussian elimi-
nation), B = LU, where L is lower triangular
with 1’s along the main diagonal and U is up-
per triangular. This factorization is not al-
ways possible. The multipliers in the reduc-
tion are stored in L, the reduced matrix in U.

• QR (or orthogonal triangular) factorization,
B = QR, where Q is unitary, Q–1 = Q* (conju-
gate transpose of Q), and R is upper trian-
gular with nonnegative diagonal entries.
This factorization always exists. Indeed, the
columns of Q are the outputs of the Gram-
Schmidt orthonormalizing process when 
it is executed in exact arithmetic on the
columns of B = (b1, b2, …, bn).

Each factorization leads to an algorithm by iter-
ation.

The LU transform of B is UL = L–1BL, and the
QR transform of B is RQ = Q–1BQ = Q*BQ. In
general, the LU or QR transform of B will not
have more zero entries than B. The rewards of
using this transform come only by repetition.

Theorem 1 (Fundamental Theorem). If B’s eigen-
values have distinct absolute values and the QR trans-
form is iterated indefinitely starting from B1 = B,

Factor Bj = QjRj,
Form Bj+1 = RjQj, j = 1, 2, ….

then, under mild conditions on the eigenvector ma-
trix of B, the sequence {Bj} converges to the upper
triangular form (commonly called the Schur form) of
B with eigenvalues in monotone decreasing order of
absolute value down the diagonal.

This result is not obvious; see James Hardy
Wilkinson’s article for proofs.4 The procedure that
generates {Bj} is called the basic QR Algorithm.

A similar theorem holds for the basic LU al-
gorithm, provided all the transforms exist. It
takes several clever observations to turn this sim-
ple theory into the highly successful QR Algo-
rithm of today.

Invariance of the Hessenberg form
If B is an upper Hessenberg matrix (entry (i, j)

vanishes if i > j + 1), then so are all its QR iterates
and LU iterates. This useful result is easy to see
because it depends only on the pattern of zeros
in the matrices and not on the values of the
nonzero entries. If Bj is Hessenberg, then so is
Qj, because RJ

–1 is triangular. Consequently, RjQj
= (Bj+1) is also Hessenberg. The cost of comput-
ing the QR factorization falls from O(n3) to
O(n2) when the matrix is Hessenberg and n ×
n.5A similar result holds for LU iterates.

Fortunately, any matrix can be reduced by simi-
larities to Hessenberg form in O(n3) arithmetic op-
erations in a stable way, and from this point on we
will assume this reduction has been performed as
an initial phase. The mild conditions mentioned in
the Fundamental Theorem are satisfied by upper
Hessenberg matrices with nonzero subdiagonals.6

Accelerating convergence
The Hessenberg sequences {Bj} and {Cj} pro-

duced by the basic algorithms converge linearly,
and that is too slow for impatient customers. We
can improve the situation by making a subtle
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change in our goal. Instead of looking at the ma-
trix sequence {Bj}, we can focus on the (n, n – 1)
entry of each matrix, the last subdiagonal entry.
When the (n, n – 1) entry is negligible, the (n, n)
entry is an eigenvalue—to within working pre-
cision—and column n does not influence the re-
maining eigenvalues. Consequently, the variable
n can be reduced by 1, and computation contin-
ues on the smaller matrix. We say that the nth
eigenvalue has been deflated. The top of the ma-
trix need not be close to triangular form. Thus,
convergence refers to the scalar sequence of (n, n
– 1) entries. The rate of convergence of this se-
quence can be vastly improved, from linear to
quadratic, by using the shifted QR Algorithm:
Let B1 = B. For i = 1, 2, … until convergence,

Select a shift si
Factor Bi – siI = QiRi
Form Bi+1 = RiQi + siI = Qi

*BiQi.

In principle, each shift strategy has a different
convergence theory. It is rare that more than 2n
QR iterations are needed to compute all the
eigenvalues of B.

The double shift implementation for real
matrices

There is a clever variation on the shifted QR
Algorithm that I should mention. In many appli-
cations, the initial matrix is real, but some of the
eigenvalues are complex. The shifted algorithm
must then be implemented in complex arithmetic
to achieve quadratic convergence. The man who
first presented the QR Algorithm, J.G.F Francis,7

showed how to keep all arithmetic in the real field
and still retain quadratic convergence.

Let us see how it is done. Without loss, take 
j = 1. Consider two successive steps:

B1 – s1I = Q1R1
B2 = R1Q1 + s1I
B2 – s2I = Q2R2
B3 = R2Q2 + s2I.

It turns out, after some manipulation, that

(Q1Q2)(R2R1) = (B1 – s1I) (B1 – s2I)

and

B3 = (Q1Q2)*B1(Q1Q2).

Suppose s1 and s2 are either both real or a com-
plex conjugate pair. Then (B1 – s1I)(B1 – s2I) is
real. By the uniqueness of the QR factorization,

Q1Q2 is the Q factor of (B1 – s1I)(B1 – s2I) and so
is real orthogonal, not just unitary. Hence, B3 is
a product of three real matrices and thus real.

The next challenge is to compute B3 from B1
and s (complex) without constructing B2. The so-
lution is far from obvious and brings us to the
concept of bulge chasing, a significant component
of the QR success story.

Bulge chasing
The theoretical justification comes from the

Implicit Q or Uniqueness of Reduction property.

Theorem 2 (Uniqueness). If Q is orthogonal, B is real,
and H = Q*BQ is a Hessenberg matrix in which each
subdiagonal entry hi+1,i > 0, then H and Q are deter-
mined uniquely by B and q1, the first column of Q.

Now return to the equations above and sup-
pose s1 = s, s2 = s– ≠ s. If B1 is Hessenberg, then so
are all the Bi’s. Suppose that B3 has positive sub-
diagonal entries. By Theorem 2, both B3 and
Q1Q2 are determined by column 1 of Q1Q2,
which we’ll call q. Because R2R1 is upper trian-
gular, q is a multiple of the first column of

B1
2 – 2 (Re s)B1 + |s|2I.

Because B1 is Hessenberg, the vector q is zero
except in its top three entries.

The following three-stage algorithm computes
B3. It uses orthogonal matrices Hj, j =1, 2, …, n –
1, such that Hj is the identity except for a 3 × 3
submatrix in rows and columns j, j + 1, j + 2. Hn–1
differs from I only in its trailing 2 × 2 matrix.

1. Compute the first three entries of q.
2. Compute a matrix H1 such that H1

tq is a
multiple of e1, the first column of I. Form
C1 = H1

tB1H1. It turns out that C1 is upper
Hessenberg except for nonzeros in positions
(3, 1), (4, 1), and (4, 2). This little submatrix
is called the bulge.

3. Compute a sequence of matrices H2, …,
Hn–1 and Cj = Hj

tCj-1Hj, j = 2, …, n – 1 such
that Cn–1 = Ht

n–1 … H2
tC1H2 … Hn–1 is a

Hessenberg matrix with positive subdiago-
nal entries. More on Hj below.

We claim that Cn–1 = B3. Recall that column 1
of Hj is e1 for j > 1. Thus, H1H2 … Hn-1e1 = H1e1
= q/ q = (Q1Q2)e1. Now Cn–1 = (H1 …
Hn–1)tB1(H1 … Hn–1), and B3 = (Q1Q2)tB1(Q1Q2).
The Implicit Q Theorem ensures that B3 and
Cn–1 are the same. Moreover, if s is not an eigen-
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value, then Cn–1 must have positive subdiagonal
entries in exact arithmetic.

Step 3 involves n – 2 minor steps, and at each
one only three rows and columns of the array are
altered. The code is elegant, and the cost of form-
ing Cn–1 is about 5n2 operations. The transforma-
tion C2 → H2

tC1H2 pushes the bulge into posi-
tions (4, 2), (5, 2), and (5, 3), while creating zeros
in positions (3, 1) and (4, 1). Subsequently, each
operation with an H matrix pushes the bulge one
row lower until it falls off the bottom of the ma-
trix and the Hessenberg form is restored. The
transformation B1 → B3 is called a double step.

It is now necessary to inspect entry (n – 1, n – 2)
as well as (n, n – 1) to see whether a deflation is
warranted. For complex conjugate pairs, the (n – 1,
n – 2) entry, not (n, n – 1), becomes negligible.

The current shift strategies for QR do not guar-
antee convergence in all cases. Indeed, examples
are known where the sequence {Bj} can cycle. To
guard against such misfortunes, an ad hoc excep-
tional shift is forced from time to time. A more
complicated choice of shifts might produce a nicer
theory, but practical performance is excellent.8

The symmetric case

The QR transform preserves symmetry for real
matrices and preserves the Hermitian property
for complex matrices: B → Q*BQ. It also preserves
Hessenberg form. Because a symmetric Hessen-
berg matrix is tridiagonal (that means entry (i, j)
vanishes if|i – j| > 1), the QR Algorithm pre-
serves symmetric tridiagonal form and the cost of
a transform plunges from O(n2) to O(n) opera-
tions. In fact, the standard estimate for the cost of
computing all the eigenvalues of an n × n sym-
metric tridiagonal matrix is 10n2 arithmetic op-
erations. Recall that all the eigenvalues are real.

One reason this case is worthy of a section to
itself is its convergence theory. Theorem 1 tells
us that the basic algorithm (all shifts are zero)
pushes the large eigenvalues to the top and the
small ones to the bottom. A shift strategy
Wilkinson suggested in the 1960s always makes
the (n, n – 1) entry converge to zero. Moreover
convergence is rapid. Everyone believes the rate
is cubic (very fast), although our proofs only
guarantee a quadratic rate (such as Newton’s it-
eration for polynomial zeros).9

The implementation for symmetric tridiagonals
is particularly elegant, and we devote a few lines to
evoke the procedure. The bulge-chasing method
described earlier simplifies, because the bulge con-
sists of a single entry on each side of the diagonal.

There is one more twist to the implementa-
tion that is worth mentioning. The code can be
rearranged so that no square roots need to be
computed.9

The discovery of the algorithms

There is no obvious benefit in factoring a
square matrix B into B = QR and then forming a
new matrix RQ = Q*BQ. Indeed, some structure
in B might be lost in Q*BQ.

So how did someone come up with the idea of
iterating this transformation? Major credit is due
to the Swiss mathematician and computer scientist
H. Rutishauser. His doctoral thesis was not con-
cerned with eigenvalues but rather with a more
general algorithm he invented, which he called the
Quotient-Difference (QD) Algorithm.10 This
procedure can be used to find zeros of polynomi-
als or poles of rational functions or to manipulate
continued fractions. The algorithm transforms an
array of numbers, which Rutishauser writes as

Z = (q1, e1, q2, e2, …, qn–1, en–1, qn)

into another one, Z^, of the same form.
Let us define two bidiagonal matrices associ-

ated with Z. For simplicity, take n = 5; then

, .

Rutishauser observed that the rhombus rules he
discovered for the QD transformation, namely

,
admit the following remarkable interpretation:

.
Note that UL and LU are tridiagonal matrices

with all superdiagonal entries equal to one. In
other words, the QD Algorithm is equivalent to
the following procedure on tridiagonals J with
unit superdiagonals:

Factor J = LU,

Form .
Thus was the LU transform born. It did not

take Rutishauser a moment to see that the idea
of reversing factors could be applied to a dense
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matrix or a banded matrix. Although the QD Al-
gorithm appeared in 1953 or 1954, Rutishauser
did not publish his LU algorithm until 1958.10,11

He called it LR, but I use LU to avoid confusion
with QR.

Unfortunately, the LU transform is not always
stable, so the hunt was begun for a stable variant.
This variant was found by a young computer sci-
entist J.G.F Francis,7 greatly assisted by his men-
tor Christopher Strachey, the first professor of
computation at Oxford University. Independent
of Rutishauser and Francis, Vera Kublanovskaya
in the USSR presented the basic QR Algorithm
in 1961.12 However, Francis not only gave us the
basic QR Algorithm, but at the same time ex-
ploited the invariance of the Hessenberg form
and gave the details of a double step to avoid the
use of complex arithmetic.

In 1955, the calculation of the eigenvalues
and eigenvectors of a real matrix that was
not symmetric was considered a formida-
ble task for which there was no reliable

method. By 1965, the task was routine, thanks
to the QR Algorithm. However, there is more
to be done, because of accuracy issues. The
eigenvalues delivered by QR have errors that are
tiny, like the errors in rounding a number to 15
decimals, with respect to the size of the numbers
in the original matrix. That is good news for the
large eigenvalues but disappointing for any that
are tiny. In many applications, the tiny eigenval-
ues are important because they are the dominant
eigenvalues of the inverse.

For a long time, this limitation on accuracy
was regarded as an intrinsic limitation caused by
the limited number of digits for each number.
Now we know that there are important cases
where the data in the problem do define all the
eigenvalues to high relative accuracy, and cur-
rent work seeks algorithms that can deliver an-
swers to that accuracy.

The QR Algorithm was aimed at matrices
with at most a few hundred rows and columns.
Its success has raised hopes. Now customers
want to find a few eigenpairs of matrices with
thousands, even hundreds of thousands, of rows.
Most of the entries of these matrices are zero,

and they are called sparse. The QR Algorithm
is not well suited for such cases. It destroys spar-
sity and has difficulty finding selected eigenpairs.
Since 1970, research has turned toward these
challenging cases.13
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