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T H E M E  A R T I C L E

The story goes that Stan Ulam was in
a Los Angeles hospital recuperating
and, to stave off boredom, he tried
computing the probability of getting

a “perfect” solitaire hand. Before long, he hit on
the idea of using random sampling: Choose a
solitaire hand at random. If it is perfect, let count
= count + 1; if not, let count = count. After M sam-
ples, take count/M as the probability. The hard
part, of course, is deciding how to generate a
uniform random hand. What’s the probability dis-
tribution to draw from, and what’s the algorithm
for drawing a hand?

Somewhat later, John von Neumann provided
part of the answer, but in a different context. He
introduced the rejection algorithm for simulating
neutron transport. In brief, if you want to sample
from some specific probability distribution, sim-
ply sample from any distribution you have
handy, but keep only the good samples. (Von

Neumann discussed his approach in a letter to
Bob Richtmeyer [11 Mar. 1947] and in a later
letter to Ulam [21 May 1947]. Interestingly, the
letter to Richtmeyer contains a fairly detailed
program for the Eniac, while the one to Ulam
gives an explanation augmented by what we
would today call pseudocode.)

Since the rejection method’s invention, it has
been developed extensively and applied in a wide
variety of settings. The Metropolis Algorithm
can be formulated as an instance of the rejection
method used for generating steps in a Markov
chain. This is the approach we will take.

The rejection algorithm

First, let’s look at the setup for the rejection
algorithm itself. We want to sample from a pop-
ulation (for example, solitaire hands or neutron
trajectories) according to some probability dis-
tribution function, ν, that is known in theory but
hard to sample from in practice. However, we
can easily sample from some related probability
distribution function µ.

So we do this:

1. Use µ to select a sample, x.
2. Evaluate ν(x). This should be easy, once

we have x.

THE METROPOLIS ALGORITHM

The Metropolis Algorithm has been the most successful and influential of all the members of
the computational species that used to be called the “Monte Carlo Method.” Today, topics
related to this algorithm constitute an entire field of computational science supported by a
deep theory and having applications ranging from physical simulations to the foundations
of computational complexity.
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3. Generate a uniform random ρ ∈ [0,1)
if ρ < cν(x)/µ(x)
then accept x
else try again with another x

Here we choose c so that cν(x)/µ(x) < 1 
for all x.

First, the probability of selecting and then ac-
cepting some x is

.

Also, if we are collecting samples to estimate the
weighted mean, S(f), of some function f(x)—that
is, S(f) = Σf(x)cν(x)—we could merely select some
large number, M, of samples by using µ(x), re-
ject none of them, and then compute the uniform
mean:

.

That is, if we don’t reject, the ratios give us a
sample whose mean converges to the mean for
the limiting probability distribution function ν.
This method for estimating a sum is an instance
of importance sampling, because it attempts to
choose samples according to their importance.
The ideal importance function is

.

The alert reader will have noticed that this
µ(x) requires knowledge of the answer. However,
importance sampling works for a less-than-
perfect µ(x). This is because the fraction of the
samples that equal any particular x will converge
to µ(x), so the sample mean of f(x)cν(x)/µ(x) will
converge to the true mean. For the special case
of the constant function, f(x) = 1, the quantity S
is the probability of a “success” on any particular
trial of the rejection method. If we take f to be
the function that is identically equal to one, we
might know the value of S in advance. In that
case, we also know the rejection rate 1/S, which
is the average number of trials before each suc-
cess. As we shall see, when we use rejection in its
formulation as the Metropolis Algorithm, prior
knowledge of the rejection rate leads to a more
efficient method called Monte Carlo time.1

Applications: The Metropolis Algorithm

We first look at two important applications of
the Metropolis Algorithm—the Ising model and

simulated annealing—and then we examine the
problem of counting.

The Ising model
This model is one of the most extensively

studied systems in statistical physics. It was de-
veloped early in the 20th century as a model 
of magnetization and related phenomena. The
model is a 2D or 3D regular array of spins σi ∈
{–1, 1} and an associated energy E(σ) for each
configuration. A configuration is any particular
choice for the spins, and each configuration has
the associated energy

.

The sum is over those {i, j} pairs that interact
(usually nearest neighbors). Ji,j is the interaction
coefficient (often constant), and B is another
constant related to the external magnetic field.

In most applications, we want to estimate a
mean of some function f(σ) because such quanti-
ties give us a first-principles estimate of some fun-
damental physical quantity. In the Ising model,
the mean F is taken over all configurations:

.

But here, the weights come from the expression
for the configuration’s energy. The normalizing
factor Z(T) is the partition function:

.

T is the temperature and κ is the Boltzmann
constant.

A natural importance-sampling approach
might be to select configurations from the dis-
tribution:

so that the sample mean of M samples,

will converge rapidly to the true mean, F.
The problem, of course, is finding a way to

sample from µ. In this case, sampling from the
proposed “easy” distribution µ is not so simple.
Nick Metropolis and his colleagues made the fol-
lowing brilliant observation.2 If we change only
one spin, the change in energy, ∆E, is easy to eval-
uate, because only a few terms of the sum change.
This observation gives a way of constructing an
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aperiodic symmetric Markov chain converging to
the limit distribution µ. The transition probabil-
ities, pξ,σ, are such that for each configuration, σ,

.

The sum is over all configurations ξ that differ
from σ by one spin, and

when ∆(E) > 0, and pξ,σ = 1 when ∆(E) < 0.
In other words, if the move lowers the energy,

do it, and if it raises the energy, do it with some
probability p, meaning reject it with some prob-
ability 1 − p. But how to choose the site for the
attempted move? We use rejection yet again. If
there are n sites, we use a probability distribu-
tion that looks like

so that we take 1/n as the “easy” probability. That
is, we select a site uniformly and accept it accord-
ing to the Metropolis criterion we just described.

For this case, the expression for the success
rate is

.

So, the probability of exactly k rejections followed
by a success is the same as the probability that a
random ρ satisfies (1 − S)k+1 < ρ < (1 − S)k, giving
this stochastic expression for the waiting time:

.

We can use this to avoid the rejection steps while
still “counting” how many rejections would have
occurred.1

In principle, this Monte Carlo-time method
works with any rejection formulation. However,
each stage requires explicit knowledge of all pos-
sible next steps. In other words, we need the val-
ues for the “difficult” distribution ν(x). In the
Metropolis Ising case, the Markov chain formu-
lation makes this feasible.

Simulated annealing
Suppose we wish to maximize or minimize some

real-valued function defined on a finite (but large)
set. The classic example is the traveling salesman’s
problem. The function is the tour’s length, and the

set is that of possible tours. One approach is hill
climbing. That is, given a set of possible changes to
a tour, such as permuting the order of some visits,
choose the change that decreases the tour length as
much as possible. This approach’s drawback is that
it can get stuck at a local minimum, if all moves
from a tour increase that tour’s total length.

The Metropolis Algorithm offers a possible
method for jumping out of a local minimum. Let
the tour’s length play the same role that energy
plays in the Ising model, and assign a formal
“temperature,” T, to the system. Then, as long
as T > 0, there is always a nonzero probability
for increasing the tour length so that you needn’t
get trapped in local minima.

Three questions occur:

1. Does it work?
2. How long does it take?
3. Is it better than merely using hill climbing

with many different random starts?

The answers seem to be

1. Yes. A large literature covers both the theory
and applications in many different settings.
However, if T > 0, the limit probability dis-
tribution will be nonzero for nonoptimal
tours. The way around this is to decrease T as
the computation proceeds. Usually, T de-
creases like log(sk) for some positive, de-
creasing sequence of “cooling schedule” val-
ues sk, so that the acceptance probability
decreases linearly until only the true mini-
mum is accepted.

2. It depends. Designing cooling schedules to
optimize the solution time is an active re-
search topic.

3. Someone should investigate this carefully.

Counting
Let’s reconsider Ulam’s original question in a

slightly more general form: How many mem-
bers of a population P have some specific prop-
erty U? We could do the counting by designing
a Markov chain that walks through P and has a
limit probability distribution ν that is somehow
related to our interesting property U. To be
more concrete, P might be the set of partial
matchings of a bipartite graph G, and U might
be the set of matchings that are “perfect,” mean-
ing they include every graph node.

To have our Markov chain do what we want,
we define a partition function:
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.

The partition function is associated with the
probability distribution

.

Here, mk is the number of k-matchings, and λk

plays a role similar to that played by exp(−
E(σ)/(κT)) in the Ising problem. On each step,
if the move selected is from a k-matching to a (k
+ 1)-matching, the probability of doing so is λ.
Mark Jerrum and Alistair Sinclair show that the
fraction of the samples that are k-matchings can
be used to estimate the mk to whatever accuracy
is desired and that, for fixed accuracy, the time
for doing so is a polynomial in the problem’s
size.3 Physicists call estimating the mk the
monomer-dimer problem because having a k-
matching means that k pairs have been matched
as dimers and the unmatched are monomers.

The limit distribution

The Metropolis Algorithm defines a conver-
gent Markov chain whose limit is the desired
probability distribution. But what is the conver-
gence rate? Put differently, does a bound exist
on the number of Metropolis steps, τ, required
before the sample is close enough to the limit
distribution? In some cases, τ can be bounded by
a polynomial in the problem size; in other cases,
we can show that no such bound exists.

Rapid mixing
Jerrum and Sinclair have provided conver-

gence results and applications to important com-
binatorial problems, such as the monomer-dimer
problem.3 To obtain their results, they look for a
property they call rapid mixing for Markov
chains. Jerrum has also proved some “slow con-
vergence” results showing that, in some situa-
tions, Metropolis sampling does not mix rapidly
and so converges too slowly to be practical.4

Coupling from the past
The Metropolis Algorithm and its generaliza-

tions have come to be known as the Monte Carlo
Markov Chain technique (MCMC) because they
simulate a Markov chain in the hope of sampling
from the limit distribution. For the Ising model,
this limit distribution is

.

The big question is, when are we at the limit dis-
tribution? That is, what is the convergence rate?

In some cases, we can sample directly from the
limit distribution. Jim Propp and David Wilson
developed a method for this called coupling from
the past (CFTP).5

Think of a single Metropolis move as a map: f1
: S → S. For example, in the Ising model, choose
some site k1 and generate a random ρ1 for the re-
jection test. Depending on the particular state σ,
either f1(σ) = σ or f1(σ) = σ´, where σ´ differs
from σ at one site.

Generally, the image of the set of all states
does not cover all states—that is, f1[S] ⊂ S. And,
if we now choose a second map, f2, we get f1f2[S]
⊂ f1[S] ⊂ S. Continuing in this way gives

Fk[S] = f1f2f3 … fk[S] ⊂ f1f2f3 ... fk−1[S] ⊂ ... ⊂ S.

The functions are composed from the inside
out; to add later maps, we must save earlier ones.
Because the image is getting smaller, it might be-
come a singleton; that is, Fk is constant. Propp and
Wilson show that such a singleton will have been
selected from the limit distribution. So, we have a
method to sample from the true limit distribu-
tion, provided that we are willing to save all the
maps and that we can tell when we have enough
of them. One of several methods for telling when
we have converged is to look for monotonicity.
For some systems, there is an order, <, for states,
there are bottom and top states {⊥ < >}, and the
maps are order-preserving. In this case, we can
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apply the iteration to both ⊥ and > and wait for the
two ends to meet. This works, for example, for
some instances of the Ising model.

This method’s obvious advantage is that, when
such a sample can be obtained, it is “perfect.” The
disadvantages are that not all systems are
amenable to this approach and that, when it does
apply, the waiting time can be long.

Progress in MCMC has been impressive
and seems to be accelerating. Problems
that appeared impossible have been solved.
For combinatorial counting problems, re-

cent advances have been remarkable. However, two
things should be borne in mind.

The first is a famous remark attributed to von
Neumann: Anyone using Monte Carlo is in a state of
sin. We might add that anyone using MCMC is
committing an especially grievous offense. Monte
Carlo is a last resort, to be used only when no exact
analytic method or even finite numerical algorithm
is available. And, except for CFTP, the prescription
for use always contains the phrase “simulate for a
while,” meaning until you feel as if you’re at the
limit distribution. As we mentioned, for the Me-
tropolis method, there are even systems for which
convergence is provably slow. The antiferromag-
netic Ising model is one such case. In some situa-
tions, no randomized method, including MCMC,
will converge rapidly.

The second thing to bear in mind is that MCMC
is only one of many possible importance-sampling tech-
niques. For several cases, including the dimer cover
problem, the ability to approximate the limit distri-
bution directly results in extremely efficient and ac-
curate importance-sampling methods that are quite
different from MCMC.6 However, a solid theory
for these approaches is still almost nonexistent.
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